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QR Decomposition (QU) (Factorization)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

if 𝐴𝜖ℝ𝑚×𝑛 has linearly independent columns then it can be factored as 

𝐴 = 𝑄𝑅

Q-factor
❑𝑄 is 𝑚 × 𝑛 with orthonormal columns 𝑄𝑇𝑄 = 𝐼

❑ If 𝐴 is square (𝑚 = 𝑛), then 𝑄 is orthogonal 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼

R-factor
❑ 𝑅 is n× 𝑛, upper triangular, with nonzero diagonal elements
❑ 𝑅 is nonsingular (diagonal elements are nonzero)

Theorem
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QR Decomposition

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example
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❑ A QR decomposition can be created for any 
matrix — it need not be square and it need not 
have full rank.

❑ Every matrix has a QR-decomposition, though R 
may not always be invertible. 

QR Decomposition

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Schur Triangularization

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem
Suppose 𝐴 ∈ 𝑀𝑛 ℂ . There exists a unitary matrix 𝑈 ∈ 𝑀𝑛 ℂ and an 

upper triangular matrix 

𝑇 ∈ 𝑀𝑛 ℂ such that

𝐴 = 𝑈𝑇𝑈∗.
Schur triangularization are highly non-unique

Example

Compute a Schur triangularization of the following matrices:

a) 𝐴 =
1 2
5 4

b) 𝐵 =
1
2
3

2
1
−3

2
2
4
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Schur Triangularization

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important Note
Matrix

𝐴 =
1 −2
1 −1

has no real eigenvalues and thus no real Schur triangularization (since the diagonal entries 

of its triangularization 𝑇 necessarily have the same eigenvalues as 𝐴). However, it does have 

a complex Schur triangularization:

𝐴 = 𝑈𝑇𝑈∗, where

𝑈 =
1

6

2(1 + 𝑖) 1 + 𝑖

2 −2
and       𝑇 =

1

2

𝑖 2 3 − 𝑖

0 −𝑖 2
.
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Review
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Spectral Decomposition (complex and 
real)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Suppose 𝐴 ∈ 𝑀𝑛 ℂ . Then there exists a unitary matrix 𝑈 ∈ 𝑀𝑛 ℂ and

diagonal matrix 𝐷 ∈ 𝑀𝑛 ℂ such that

𝐴 = 𝑈𝐷𝑈∗.

if and only if 𝐴 is normal (i.e., 𝐴∗𝐴 = 𝐴𝐴∗).

Theorem

Theorem

Suppose 𝐴 ∈ 𝑀𝑛 ℝ . Then there exists a unitary matrix 𝑈 ∈ 𝑀𝑛 ℝ and diagonal matrix 𝐷 ∈ 𝑀𝑛 ℝ such that

𝐴 = 𝑈𝐷𝑈𝑇 .

if and only if 𝐴 is symmetric (i.e., 𝐴 = 𝐴𝑇).
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Spectral Decomposition (complex)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Spectral Decomposition (real)

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Visualization of Spectral Decomposition 

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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❑ Spectral Decomposition is nice and pretty, but 
with loss of generality:
Real Field: For square and symmetric matrices!
Complex Field: For square and normal matrices!

For General?? SVD!!!

Important Note

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Normal Matrices have Orthogonal Eigenspaces

Think with spectral decomposition

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

Suppose 𝐴 ∈ 𝑀𝑛 ℂ is normal. If 𝐯,𝐰 ∈ ℂ𝒏 are eigenvectors of 𝐴

corresponding to different eigenvalues then 𝐯.𝐰 = 0. 
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❑ Review: Gaussian Elimination, row operations are used to change 

the coefficient matrix to an upper triangular matrix.

❑ 𝐿𝑈 Decomposition is very useful when we have large matrices 𝑛

× 𝑛 and if we use gauss-jordan or the other methods, we can get 

errors.

LU-factorization for square matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition
A factorization of a square matrix 𝐴 as

𝐴 = 𝐿𝑈

where 𝐿 is lower triangular and 𝑈 is upper triangular, is called an 𝑳𝑼

− 𝐝𝐞𝐜𝐨𝐦𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 (or 𝑳𝑼 − 𝐟𝐚𝐜𝐭𝐨𝐫𝐢𝐳𝐚𝐭𝐢𝐨𝐧) of 𝐴.
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Method of LU Factorization

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important

1) Rewrite the system 𝑨𝒙 = 𝒃 as 𝑳𝑼𝒙 = 𝒃

2) Define a new 𝒏 × 𝟏 matrix 𝒚 by 𝑼𝒙 = 𝒚

3) Use  𝑼𝒙 = 𝒚 to rewrite 𝑳𝑼𝒙 = 𝒃 as 𝑳𝒚 = 𝒃 and solve the system for 𝒚

4) Substitute 𝒚 in 𝑼𝒙 = 𝒚 and solve for 𝒙.
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Constructing LU Factorization

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important

1) Reduce 𝑨 to a REF form 𝑼 by Gaussian elimination without row exchanges, keeping track 

of the multipliers used to introduce the leading 𝟏𝒔 and multipliers used to introduce the 

zeros below the leading 𝟏𝒔

2) In each position along the main diagonal of 𝑳 place the reciprocal of the multiplier that 

introduced the leading 𝟏 in that position in 𝑼

3) In each position below the main diagonal of 𝑳 place negative of the multiplier used to 

introduce the zero in that position in 𝑼

4) Form the decomposition 𝑨 = 𝑳𝑼
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Constructing LU Factorization

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example
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LU-factorization for non-square matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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LU Numerical notes

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note

The following operation counts apply to an 𝑛 × 𝑛 dense matrix 𝐴 (with most entries nonzero) for 𝑛

moderately large, say, 𝑛 ≥ 30. 

1. Computing an 𝐿𝑈 factorization of 𝐴 takes about 2𝑛3/3 flops (about the same as row reducing [𝐴 𝐛]), 

whereas finding 𝐴−1 requires about 2𝑛3 flops.

2. Solving 𝐿𝐲 = 𝐛 and 𝑈𝐱 = 𝐲 requires about 2𝑛2 flops, because any 𝑛 × 𝑛 triangular system can be solved 

in about 𝑛2 flops.

3. Multiplication of 𝐛 by 𝐴−1 also requires about 2𝑛2 flops, but the result may not be as accurate as that 

obtained from 𝐿 and 𝑈 (because of roundoff error when computing both 𝐴−1 and 𝐴−1𝐛).

4. If 𝐴 is sparse (with mostly zero entries), then 𝐿 and 𝑈 may be sparse, too, whereas 𝐴−1 is likely to be 

dense. In this case, a solution of 𝐴𝐱 = 𝐛 with an 𝐿𝑈 factorization is much faster than using 𝐴−1.
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Some Notes

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note

❑ Sometimes it is impossible to write a matrix in the form “lower triangular”×“upper triangular”.

❑ An invertible matrix 𝐴 has an 𝐿𝑈 decomposition provided that all upper left determinants are non-

zero Why??

If A is invertible, then it admits an LU (or LDU) factorization if and 
only if all its leading principal minors are non-zero. 

If A is a singular matrix of rank k, then it admits an LU 
factorization if the first k leading principal minors are non-zero
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Some Notes

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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PLU Factorization

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

if 𝐴 is 𝑛 × 𝑛 and nonsingular, then it can be factored as

𝐴 = 𝑃𝐿𝑈

𝑃 is a permutation matrix, 𝐿 is unit lower triangular, 𝑈 is upper triangular

❑ not unique; there may be several possible choices for 𝑃, 𝐿, 𝑈

❑ interpretation: permute the rows of 𝐴 and factor 𝑃𝑇𝐴 as 𝑃𝑇𝐴 = 𝐿𝑈

❑ also known as Gaussian elimination with partial pivoting (GEPP)

❑ Is it unique??

Theorem

Example

0
2
6

5
9
8

5
0
8

=
0
0
1

0
1
0

1
0
0

1
1/3
0

0
1

15/19

0
0
1

6
0
0

8
19/3
0

8
−8/3
135/19

❑ we will skip the details of calculating 𝑃, 𝐿, 𝑈
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Cholesky Factorization

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important

Every positive definite matrix 𝐴 𝜖 ℝ𝑛×𝑛 can be factored as

𝐴 = ℝ𝑇ℝ

where ℝ is upper triangular with positive diagonal elements

❑ complexity of computing ℝ is 1/3 𝑛3 flops

❑ℝ is called the 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 of 𝐴

❑ can be interpreted as “square root” of a positive definite matrix

❑gives a practical method for testing positive definiteness
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Cholesky Factorization algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

𝐴11 𝐴1,2:𝑛
𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

=
𝑅11 0

𝑅1,2:𝑛
𝑇 𝑅2:𝑛,2:𝑛

𝑇

𝑅11 𝑅1,2:𝑛
0 𝑅2:𝑛,2:𝑛

=
𝑅11
2 𝑅11𝑅1,2:𝑛

𝑅11𝑅1,2:𝑛
𝑇 𝑅1,2:𝑛

𝑇 𝑅1,2:𝑛 + 𝑅2:𝑛,2:𝑛
𝑇 𝑅2:𝑛,2:𝑛

1. compute first row of 𝑅:

𝑅11 = 𝐴11, 𝑅1,2:𝑛 =
1

𝑅11
𝐴1,2:𝑛

2. compute 2, 2 block 𝑅2:𝑛,2:𝑛 from

𝐴2:𝑛,2:𝑛 − 𝑅1,2:𝑛
𝑇 𝑅1,2:𝑛 = 𝑅2:𝑛,2:𝑛

𝑇 𝑅2:𝑛,2:𝑛 = 𝐴2:𝑛,2:𝑛 −
1

𝐴11
𝐴2:𝑛,1𝐴2:𝑛,1

𝑇

this is a Cholesky factorization of order 𝑛 − 1

Example

if 𝐴 is positive definite
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Cholesky Factorization algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

25
15
−5

15
18
0

−5
0
11

=
𝑅11
𝑅12
𝑅13

0
𝑅22
𝑅23

0
0
𝑅33

𝑅11
0
0

𝑅12
𝑅22
0

𝑅13
𝑅23
𝑅33

❑ first row of 𝑅

25
15
−5

15
18
0

−5
0
11

=
5
3
−1

0
𝑅22
𝑅23

0
0
𝑅33

5
0
0

3
𝑅22
0

−1
𝑅23
𝑅33

❑ second row of 𝑅

18 0
0 11

−
3
−1

3 − 1 =
𝑅22 0
𝑅23 𝑅33

𝑅22 𝑅23
0 𝑅33

9 3
3 10

=
3 0
1 𝑅33

3 1
0 𝑅33

❑ third column of 𝑅: 10 − 1 = 𝑅33
2 , 𝑖. 𝑒. , 𝑅33 = 3
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Rank and matrix factorizations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

❑ Let 𝐵 = 𝑏1, … , 𝑏𝑟 ⊂ ℝ𝑚 with 𝑟 = rank(𝐴) be basis of range(𝐴). Then each of the columns of 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑛] can 

be expressed as linear combination of 𝐵:

𝑎𝑖 = 𝑏1𝑐𝑖1 + 𝑏2𝑐𝑖2 +⋯+ 𝑏𝑟𝑐𝑖𝑟 = [𝑏1, … , 𝑏𝑟]

𝑐𝑖1
⋮
𝑐𝑖𝑟

,

for some coefficients 𝑐𝑖𝑗𝜖 ℝ with 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑟.

Stacking these relations column by column →

𝑎1, … , 𝑎𝑛 = [𝑏1, … , 𝑏𝑟]

𝑐11 ⋯ 𝑐𝑛1
⋮ ⋮
𝑐1𝑟 ⋯ 𝑐𝑛𝑟
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We say that 𝐴 has low rank if rank(𝐴) ≪ 𝑚, 𝑛.

Illustration of low-rank factorization: 

Rank and matrix factorizations

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Lemma

A matrix 𝐴 ∈ ℝ𝑚×𝑛 of rank 𝑟 admits a factorization of the form

𝐴 = 𝐵𝐶𝑇 , 𝐵 ∈ ℝ𝑚×𝑟 , 𝐶 ∈ ℝ𝑛×𝑟 .

❑ Generically (and in most applications), 𝐴 has full rank, that is, rank(𝐴)

= min 𝑚, 𝑛 .

❑ Aim instead at approximating 𝐴 by a law-rank matrix.
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